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Summary. The French I N R A  wheat (Triticum aes- 
tivum L. em Thell.) breeding program is based on multi- 
location trials to produce high-yielding, adapted lines for 
a wide range o f  environments. Differential genotypie re- 
sponses to variable environment conditions limit the ac- 
curacy of  yield estimations. Factor  regression was used 
to partition the genotype-environment (GE) interaction 
into four biologically interpretable terms. Yield data 
were analyzed from 34 wheat genotypes grown in four 
environments using 12 auxiliary agronomic traits as 
genotypic and environmental covariates. Most  of  the GE 
interaction (91%) was explained by the combination of  
only three traits: 1,000-kernel weight, lodging susceptibil- 
ity and spike length. These traits are easily measured in 
breeding programs, therefore factor regression model 
can provide a convenient and useful prediction method 
of  yield. 
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Introduction 

A general feature of  yield trials is the occurrence of  a 
considerable and complex genotype-environment (GE) 
interaction. This phenomenon affects the amount  of  pro- 
gress made during selection. The usefulness of  yield data 
greatly depends on the accuracy of  predicting yield. 

The relative inadequacy of  analysis of  variance, prin- 
cipal components analysis (PCA) and linear regression 
(Mandel 1961; Finlay and Wilkinson 1963)has previous- 
ly been illustrated (Zobel et al. 1988). A better predictive 
model seems to be the FANOVA (for factor ANOVA as 

denoted by Gollob 1968), which includes both additive 
and multiplicative components. This more general model, 
also called the A M M I  model (as Additive Main effects 
and Multiplicative Interaction, Gauch 1988) is equiva- 
lent to the PCA method applied to the residual term of  
the additive model (Mandel 1969) and provides a power- 
ful statistical tool for analysis of  two-way data sets (Man- 
del 1971; Gabriel 1971; Bradu and Gabriel 1978; Kemp- 
ton 1984; Crossa et al. 1990). 

Yield trials conducted with many genotypes grown in 
several environments are usually combined with the mea- 
surement o f  agronomic traits. The wheat (Triticum aes- 
tivum L. em Thell.) testing program of  I N R A  (France) 
requires the evaluation of  lines selected in experimental 
research stations across a large range of  environments. 
The objective of  this study is to use the information on 
agronomic traits in a factor regression model, in order to 
provide some elements of  a biological explanation o f  GE 
interaction for yield. 

Materials and methods 

Experimental data 

A series of 34 winter wheat genotypes, grown in four environ- 
ments in northern France in 1990, was used to assess GE inter- 
action for yield. The lines were tested both in an extensive and 
an intensive yield trial in two locations (Le Moulon and La 
Mini6re). A randomized complete block design with two replica- 
tions per agronomic treatment was used for all analyses. Plant 
density was higher in the yield trials at Le Moulon (300 plants/ 
m 2) than in the yield trials at La Mini6re (280 plants/m 2). In Le 
Moulon, the difference between the two agronomic treatments 
was the amount of growth regulators and additive nitrate fertil- 
izers applied in the intensive trial (equivalent to the highest 
national level of intensification). In addition, both intensive and 
extensive trials were protected by fungicides. In La Mini6re, the 
only difference between the two treatments was the fungicidal 
supply in the intensive trial. Each type of treatment applied in 



each location was considered as one environment giving then 
four different environments. 

Apart from grain yield (GY in q/ha), ten auxiliary traits 
were measured: heading date (HD in number of days), plant 
height (PH), spike weight (SW), spike length (SL), kernel weight 
per spike (KW/S), kernel number per spike (KN/S), spikelet 
number per spike (SLN/S), flower number per spike (FN/S), 
lodging susceptibility (LS noted from 1 to 9) and 1,000-kernel 
weight (TKW). All of the yield components were measured from 
a random sample of ten spikes per plot. Moreover, brown rust 
(Puccinia recondita) susceptibility (BRS noted from I to 9) and 
spike number per plant (SN/P) were evaluated in the two exten- 
sive yield trials. 

In order to build an optimal prediction model for grain yield 
variability, all of the other measured traits were used to define 
the relevant covariates explaining grain yield. A new method of 
definition of covariates is proposed in the following section. 

Statistical analysis 

A preliminary ANOVA carried out on the traits measured in the 
four environments revealed significant (P=0.001) GE interac- 
tion for grain yield and 1,000-kernel weight only. All of the 
following analyses were performed using the means of the two 
replications. 

Unlike covariance analysis in which the covariates depend 
on the two factors, factor regression allows the partitioning of 
GE interaction into functions (see model 3 below) of only one 
factor each multiplied by a regression coefficient depending on 
the other factor. A breakdown of the GE interaction for yield 
requires the definition of functions (covariates) and the identifi- 
cation of the most efficient subset of covariates that can explain 
GE interaction. 

Definition of co variates. The definition of covariates aims to split 
each agronomic trait into parameters dependant on only one 
factor. In the first step, the additive model was applied to each 
of the first nine agronomic traits to estimate additive parame- 
ters. The additive model is: 

Yij =/2 -t- ~i -t- flj + Rij (1) 

where Y~j is the mean for the trait measured in the two replica- 
tions of the ith genotype in the jth environment;/2 is the grand 
mean; cq is the genotype mean deviation; flj is the environment 
mean deviation; and R~j is the residual. For each agronomic trait 
the genotypic additive parameter (cq) defines the genotypic co- 
variate, while the environmental additive parameter (fij) defines 
the environmental covariate. The additive model has I +  J -1  
degrees of freedom (df) where I is the number of genotypes and 
J is the number of environments. 

The multiplicative model was applied to 1,000-kernel weight 
because its GE interaction was significant in the ANOVA. The 
multiplicative model is: 

Yij =/2 + ~i +/~j + '~i" 0" c~j + rij . (2) 

The decomposition of the additive model residual by multiplica- 
tire structuralization increases the global parametrical dimen- 
sion of I + J -  3 df The additive (ei) and multiplicative (2i) geno- 
typic parameters are considered as genotypic covariates, while 
the additive (flj) and multiplicative @) environmental parame- 
ters are considered as environmental covariates. 0 is a scale 
parameter that does not include any factor effect (like/2 in the 
additive part). 

Optimal model construction. The factor regression model fitted 
to grain-yield data was built by progressive addition of the most 
significant covariates explaining yield variation to the basic ad- 
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ditive model. The stepwise process proposed by Denis (1988) 
was applied to yield data using the following model: 

Yij =/2-1- ~i+ flj + Z  ~'ih" Ehj-t-Z fl]k" Gki+2i ' 0 '  3j+ei~ (3) 
h k 

where k = l ,  . . . ,  K_<I and h = l  . . . . .  H_<J are the number of 
genotypic and environmental covariates, respectively; e'~h is the 
genotypic regression coefficient on environmental covariates 
(Ehj); and fl~k is the environmental regression coefficient on 
genotypic covariates (Gki). Taken together, the two sums of 
terms including the genotype and environmental covariates 
bring K ( I -1 )+  H (J -  I ) - H K  df The term eij represems the re- 
sidual. 

A covariate is declared significant at a given probability 
level if its mean square exceeds the mean square of the sum of 
the multiplicative (2 i . 0 �9 3j with I + J  3 - H - K  df) and the re- 
sidual (e~j) terms by the appropriate F-value. At each step in the 
analysis the significance of the multiplicative term relative to the 
residual term was tested. 

After finding the best single covariate model from among all 
of the possible single covariate models ( K + H = I ) ,  the best 
two-covariate model was looked for, knowing the first covari- 
ate, and so forth until the addition of the first multiplicative 
term brought no more significant information. Finally, a simple 
biological interpretation of the model obtained was provided. 
All these analyses were performed using the computer package 
INTERA (Decoux and Denis 1991), which provides least- 
squares estimates of parameters. 

Results 

F-tests were carried out  using all of  the genotypic and 
environmental  covariates defined in the Mater ia ls  and 
methods.  The significance of  the in t roduct ion of  each 
covariate  into the additive model  appl ied to yield da ta  
was tested with respect to the residual term of  the corre- 
sponding linear single covariate  model.  Ha l f  of  the traits 
gave significant F-test  results (Table 1) for either the 
genotypic or the environmental  parameter .  Nevertheless, 
for each covariate  the remaining multiplicative term of  
the GE interact ion of  model  (3) was highly significant 
(P=0.001) .  

The multiplicative parameter  of  1,000-kernel weight 
(TKW) was the only covariate  that  explained a large par t  
(P = 0.001) of  grain-yield performance as bo th  a genotyp-  
ic and  an environmental  covariate.  When  the genotypic 
covariates were considered, the additive parameter  for 
LS and the genotypic mean for BRS provided valuable 
explanat ions of  grain-yield var ia t ion at  the 0.001 and 
0.01 probabi l i ty  levels, respectively. When  the environ- 
mental  covariates were taken into considerat ion,  the ad- 
ditive parameters  for TKW, KN/S  and SW yielded signif- 
icant informat ion at the same probabi l i ty  level (P = 0.01). 
The contr ibut ion of  the environmental  additive parame-  
ters for SL and KW/S  was weak (P=0 .05 )  when they 
were used as first covariates.  

Therefore, the series o f  F-tests for all of  the possible 
single covariate  models  al lowed the retent ion of  the geno- 
typic additive parameter  of  LS in the first step. At  each 
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Table 1. F-test results for each covariate introduced into a one- 
covariate model to explain grain yield. The genotypic and envi- 
ronmental covariates are derived from genotypic means and 
from multiplicative and additive parameters of auxiliary traits 

Trait a Genotypic Environmental 
covariate covariate 

Genotypic mean 
BRS 4.6** 

Multiplicative parameter 
TKW 7.9*** 2.8*** 

Additive parameters 
LS 8.8"** NS 
TKW NS 2.5 ** 
KN/S NS 2.4"* 
SW NS 2.1 ** 
SL NS 1.9" 
KW/S NS 1.9" 

*, ** and *** significant at the 0.05, 0.01 and 0.001 probability 
levels, respectively; NS, non-significant 
a BRS, Brown rust susceptibility; TKW, 1,000-kernel weight; 
LS, lodging susceptibility; KN/S, kernel number per spike; SW, 
spike weight; SL, spike length, KW/S, kernel weight per spike 

step, one covariate was selected from among the remain- 
ing ones, with the constraint of retaining the eovariates 
that had already been introduced at steps previous. 

Optimal model construction 

The second covariate selected was the genotypic multi- 
plicative parameter for TKW, while the genotypic mean 
of BRS ranked second for the second covariate. The third 
covariate selected was the genotypic additive parameter 
for SL, and the fourth one was the environmental multi- 
plicative parameter for TKW 

The addition of this fourth covariate led to the 
threshold at which the multiplicative term of GE interac- 
tion lost any significance. Thus, it corresponds to the 
optimal model because the GE interaction term becomes 
unnecessary. However, the genotypic additive parameter 
for SLN/S was the last covariate to bring any additional 
significant explanation of grain yield to the optimal mod- 
el (P = 0.05). 

With the order of the genotypic covariates known the 
ANOVA was performed (Table 2) according to the proce- 
dure proposed by Denis (1988). This analysis consists of 
progressively removing the less efficient covariates until 
the additive model is obtained. The accuracy of the F- 
tests, which were always based on a real error, leads to 
the preferred usage of this backward ANOVA over the 
forward ANOVA, which entails the progressive addition 
of more efficient new covariates, including all those al- 
ready introduced. 

Table 2. ANOVA of the optimal model with one multiplicative 
term 

Source of df Sum of Mean F-test P-level 
variation" squares squares (• 10- 3) 

Environment (E) 3 7 ,707  2,569 80.3 0 * 
Genotype (G) 33 10,877 330 10.3 0 * 
G: a,LS 3 2,138 713 22.3 0* 
G: m.TKW 3 1,694 565 17.7 0 * 
G: a.SL 3 558 186 5.8 3* 
E: m.TKW 30 2,904 97 3.0 2* 
MT1 31 1,666 54 1.7 82 
Residual 29 927 32 

* Significant at P<0.05 
a G and E, Mean genotypic and environmental covariates, re- 
spectively; a and m, mean additive and multiplicative parame- 
ters, respectively; MT1, the first multiplicative term; LS, lodging 
susceptibility; TKW, 1,000-kernel weight; SL, spike length 

Biological interpretation 

The additive parameters used as either genotypic or envi- 
ronmental covariates are intuitively understood to reflect 
a sort of intrinsic value of either the genotypes or the 
environments. However, the multiplicative parameters, 
which are assessed by model (2) adjusted to the TKW, are 
not directly interpretable because environmental multi- 
plicative parameter depends on the genotypic multiplica- 
tire parameter which is structurally associated to it. The 
observation of significant correlations between both the 
environmental covariate of the optimal model and all of 
the other environmental covariates and between the 
genotypic covariates of the optimal model and all of the 
other genotypic eovariates provides us with some ele- 
ments of interpretation (Table 3). 

The environmental multiplicative parameter (6j) for 
TKW is highly correlated with the environmental addi- 
tive parameter (flj) for TKW (Q = 0.96 at P =  0.005). This 
multiplicative parameter is consistently highly correlated 
with the additive parameter of KN/S. The genotypic 
multiplicative parameter (21) for the TKW is weakly cor- 
related with the genotypic additive parameter (al) of 
TKW (~ = 0.47 at P =  0.001) and with the genotypic BRS 
(~o = 0.43 at P--  0.005). The genotypic additive parameter 
for SL is also correlated with the genotypic mean of BRS. 
With regard to the multiplicative parameters, only the 
absolute value of the correlation coefficients can be inter- 
preted. 

The second two-covariate model obtained with the 
step-by-step procedure included LS and the BRS as 
genotypic covariates. Since the genotypic mean of BRS is 
correlated with the genotypic multiplicative parameter of 
TKW and the genotypic additive parameter of SL, BRS 
was removed from subsequent models. 
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Table 3. Correlation coefficients and their probability level 
(PN0.05) between the optimal model covariates and all the 
others 

Traits ~ Correlation Probability 
coefficient level 

Environmental covariate: (2 df Student's t-test) 
(mTKW, aKN/S) ~ = - 0.97 0.001 
(mTKW, aTKW) ~o = + 0.96 0.005 
(mTKW, aSW) 0 = - 0.92 0.010 
(mTKW, aKW/S) Q = - 0.91 0.010 
(mTKW, aSL) ~ = + 0.87 0.025 

Genotypic covariates: (32 df Student's t-test) 
(aLS,aPH) ~ = + 0.37 0.025 
(mTKW, aTKW) ~ = + 0.47 0.001 
(mTKW, BRS) ~ = + 0.43 0.005 
(mTKW, SN/P) Q = + 0.31 0.050 
(mTKW, aHD) 0 = -- 0.31 0.050 
(aSL,BRS) 0 = - 0.33 0.025 
(aSL,SN/P) Q = -0.33 0.025 
(aSL,aSLN/S) ~ = + 0.31 0.050 

a a and m, Mean additive and multiplicative parameters, re- 
spectively; TKW, 1,000-kernel weight; KN/S, kernel number per 
spike; SW, spike weight; KW/S, kernel weight per spike; SL, 
spike length; LS, lodging susceptibility; PH, plant height; BRS, 
brown rust susceptibility; SN/P, spike number per plant; HD, 
heading date; SLN/S, spikelet number per spike 

Discussion 

The presence of GE interaction is the main obstacle in the 
estimation of genotypic yields from multilocation trials. 
The factor regression model provides an interesting par- 
titioning of the GE interaction on yield data into a sum 
of linear functions of genotypic and environmental co- 
variates. These covariates are derived from agronomic 
traits frequently measured in yield trials conducted by 
plant breeding programs and have the advantage of 
providing biological explanations of GE interaction for 
yield. In order to remove unnecessary terms from the 
predictive model, one can consider that the optimal mod- 
el corresponds to the threshold at which the multiplica- 
tive term becomes non-significant relative to the residual 
term. 

Based on these results from wheat trials, one can 
conclude that GE interaction is essentially due to yield- 
limiting factors occurring at the grain-filling stage. One 
could hazard the conjecture that the multiplicative pa- 
rameter for TKW could be thought of as reflecting some 
physiological traits like grain-filling kinetics. Lodging 
was particularly widespread in 1990 and occurred during 
grain maturation. Hence, lodging susceptibility, though 
having no correlation with the 1,000-kernel weight, re- 
duced yield, probably by acting on the kernel number per 
square meter. 

One could argue that it may have been more biolog- 
ically meaningful to retain the genotypic mean of BRS 

even if the statistical approach led to the elimination of 
this covariate (P = 0.01 instead of P = 0.001 for the geno- 
typic multiplicative parameter of TKW). But the step-by- 
step procedure performed with the two covariates model, 
including the genotypic additive parameter of LS and the 
genotypic mean of BRS until the treshold at which the 
first multiplicative term lost any significance, leads to a 
five covariates model. This model includes the following 
three additional covariates: the genotypic multiplicative 
parameter of TKW, the genotypic additive parameter of 
SLN/S and the environmental multiplicative parameter 
of TKW. Hence, given the data used in this study the 
optimal model seems to be the four covariates model 
presented previously. The present results stress the im- 
portance of genotypic BRS for interpreting GE interac- 
tion for yield via the multiplicative parameter for TKW. 
This observation fits in with the covariance analysis per- 
formed by Baker (1971), which illustrated that genotype- 
site interaction was due primarily to a simply inherited 
trait, such as rust resistance. 

As a basis for comparing the factor regression model 
with the AMMI model, it should be noted that the latter 
first fits additive effects for genotypes and environments 
and then fits multiplicative effects for GE interaction by 
principal components analysis (PCA). The first PCA axis 
usually explains the largest fraction of the GE interaction 
and often appears to be sufficient (Gauch and Zobel 
1988; Zobel et al. 1988; Crossa et al. 1991). As a conse- 
quence, the multiplicative modeling in the factor regres- 
sion method could be reduced to the first multiplicative 
term without significant loss of information. Indeed, the 
determination coefficient, which is the proportion of the 
variability explained by the AMMI model that includes 
only one multiplicative term relative to the whole vari- 
ability, equals 85% in this example. Nevertheless, the 
determination coefficient of the model splitting the GE 
interaction (which makes up 35 % of the whole variability 
of yield) into a linear combination of relevant agronomic 
covariates is equal to 91% without the first multiplicative 
term (MT1) and to 97% when MTI is included into the 
factor regression model. 

Even if the difference between the AMMI model and 
the factor regression model cannot be statistically tested, 
given these two models are not nested, in addition to 
improving the prediction of yield stability, this alterna- 
tive method especially provides a direct biological inter- 
pretation of GE interaction. 
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